56 research outputs found

    Hands help hearing: Facilitatory audiotactile interaction at low sound-intensity levels

    Get PDF
    Auditory and vibrotactile stimuli share similar temporal patterns. A psychophysical experiment was performed to test whether this similarity would lead into an intermodal bias in perception of sound intensity. Nine normal-hearing subjects performed a loudness-matching task of faint tones, adjusting the probe tone to sound equally loud as a reference tone. The task was performed both when the subjects were touching and when they were not touching a tube that vibrated simultaneously with the probe tone. The subjects chose on average 12% lower intensities (p<0.01) for the probe tone when they touched the tube, suggesting facilitatory interaction between auditory and tactile senses in normal-hearing subjects.Peer reviewe

    Integration of Consonant and Pitch Processing as Revealed by the Absence of Additivity in Mismatch Negativity

    Get PDF
    Consonants, unlike vowels, are thought to be speech specific and therefore no interactions would be expected between consonants and pitch, a basic element for musical tones. The present study used an electrophysiological approach to investigate whether, contrary to this view, there is integrative processing of consonants and pitch by measuring additivity of changes in the mismatch negativity (MMN) of evoked potentials. The MMN is elicited by discriminable variations occurring in a sequence of repetitive, homogeneous sounds. In the experiment, event-related potentials (ERPs) were recorded while participants heard frequently sung consonant-vowel syllables and rare stimuli deviating in either consonant identity only, pitch only, or in both dimensions. Every type of deviation elicited a reliable MMN. As expected, the two single-deviant MMNs had similar amplitudes, but that of the double-deviant MMN was also not significantly different from them. This absence of additivity in the double-deviant MMN suggests that consonant and pitch variations are processed, at least at a pre-attentive level, in an integrated rather than independent way. Domain-specificity of consonants may depend on higher-level processes in the hierarchy of speech perception

    Audiotactile interactions in temporal perception

    Full text link

    Vibration-induced auditory-cortex activation in a congenitally deaf adult

    Get PDF
    AbstractConsiderable changes take place in the number of cerebral neurons, synapses and axons during development, mainly as a result of competition between different neural activities [1–4]. Studies using animals suggest that when input from one sensory modality is deprived early in development, the affected neural structures have the potential to mediate functions for the remaining modalities [5–8]. We now show that similar potential exists in the human auditory system: vibrotactile stimuli, applied on the palm and fingers of a congenitally deaf adult, activated his auditory cortices. The recorded magnetoencephalographic (MEG) signals also indicated that the auditory cortices were able to discriminate between the applied 180 Hz and 250 Hz vibration frequencies. Our findings suggest that human cortical areas, normally subserving hearing, may process vibrotactile information in the congenitally deaf

    Synthesis and crystallization of titanium dioxide in supercritical carbon dioxide (scCO2)

    Get PDF
    In this work, a simple and low-temperature method to synthesize titanium dioxide (TiO2) particles with supercritical carbon dioxide is presented. The particles were synthesized by measuring 5 ml of tetra-n-butyl orthotitanate precursor to the supercritical chamber. The pressure was maintained at 15.0 MPafor all experiments. Reaction temperatures used were 50 °C or 70 °C. After reaching treatment parameters 10 ml of deionized water was introduced to the chamber with a co-solvent pump. A mixer was used inside the chamber to ensure proper mixing of water and precursor. Reaction times of 10, 60 and 300 min were used. Characterization of the particle crystal phase was determined by X-ray diffraction, differential scanning calorimetry and transmission electron microscopy. The specific surface areas were measured with nitrogen adsorption tests (BET). The results showed that the particles synthesized with reaction times of 10 and 60 min contained brookite as the crystalline phase. With longer reaction time of 300 min the phase shifted to anatase. In most experiments there was also significant amount of amorphous phase present. The specific surface areas varied between 274.3-566.6 m2/g.publishedVersionPeer reviewe

    Structured ZnO films : Effect of copper nitrate addition to precursor solution on topography, band gap energy and photocatalytic activity

    Get PDF
    ZnO is a widely studied semiconductor material with interesting properties such as photocatalytic activity leading to wide range of applications, for example in the field of opto-electronics and self-cleaning and antimicrobial applications. Doping of photocatalytic semiconductor materials has been shown to introduce variation in the band gap energy of the material. In this work, ZnO rods were grown on a stainless steel substrates using hydrothermal method introducing copper nitrate into the precursor solution. Zinc nitrate and hexamethylenetetramine were used as precursor materials and the growth was conducted at 90 °C for 2 h in order to achieve a well-aligned evenly distributed rod structure. Copper was introduced as copper nitrate that was added in the precursor solution in the beginning of the growth. The as-prepared films were then heat-treated at 350 °C and band gap measurements were performed for prepared films. It was found that increase in the copper concentration in the precursor solution decreased the band gap of the ZnO film. Methylene blue discolouration tests were then performed in order to study the effect of the copper nitrate addition to precursor solution on photocatalytic activity of the structured ZnO films.publishedVersionPeer reviewe

    Adaptation of neuromagnetic N1 responses to phonetic stimuli by visual speech in humans.

    No full text
    The technique of 306-channel magnetoencephalogaphy (MEG) was used in eight healthy volunteers to test whether silent lip-reading modulates auditory-cortex processing of phonetic sounds. Auditory test stimuli (either Finnish vowel /ae/ or /ø/) were preceded by a 500 ms lag by either another auditory stimulus (/ae/, /ø/ or the second-formant midpoint between /ae/ and /ø/), or silent movie of a person articulating /ae/ or /ø/. Compared with N1 responses to auditory /ae/ and /ø/ when presented without a preceding stimulus, the amplitudes of left-hemisphere N1 responses to the test stimuli were significantly suppressed both when preceded by auditory and visual stimuli, this effect being significantly stronger with preceding auditory stimuli. This suggests that seeing articulatory gestures of a speaker influences auditory speech perception by modulating the responsiveness of auditory-cortex neurons
    • …
    corecore